پی‌آمد

پی‌آمدِ آنچه بر من می‌گذرد

پی‌آمد

پی‌آمدِ آنچه بر من می‌گذرد

طبقه بندی موضوعی
بایگانی

۴ مطلب با موضوع «فلسفه ریاضی» ثبت شده است

 

جدیدا هم از طریق کتاب «منطق صوری» دکتر خوانساری و هم از طریق بخش فلسفه ابن‌سینای کتاب «سه حکیم مسلمان» کمی با فضای فلسفه ارسطویی آشنا شده ام* در هر دوی این کتاب‌ها به نظر می‌رسد به طور کلی ارسطو میانه چندان خوبی با ریاضی نداشته است. در فلسفه قدیم، کمیت (اعداد) تنها بر قسمتی از جهان قابل انطباق اند و فقط یکی از مقولات دهگانه هستند و نُه مقوله دیگر چیزی غیر از عدد هستند. برای مثال سردی و گرمی کیفیت است و نمی توان برای آن عدد تعیین کرد، عدد صرفا برای چیزی است که کمّی باشد یعنی نقصان و فزونی برای آن معنی دار باشد در حالی که برای کیفیتی چون دما (یا رنگ) تنها می توان شدت و ضعف تعریف کرد نه کم و زیاد بنا بر این عدد نسبت دادن به دما کار اشتباهی است. کار تا آنجا پیش می رود که حتی عددی که دماسنج امروزی نشان می دهد صرفا طول یک میله جیوه ای است که کمیت است نه واقعا دما. شاید این حرفها برای مایی که به فیزیک امروز عادت داریم عجیب به نظر برسد اما واقعیت این است که به نظرم ارسطو (لااقل این ارسطویی که من دیدم) بیش از هر فیزیکدان امروزی به تجربه گرایی پایبند است!

قصه اینجاست که ما در فیزیک امروز بسیار به کاربرد عدد و ریاضی در توصیف جهان عادت کرده‌ایم آنقدر که فراموش می‌کنیم این واقعا حیرت آور است که توصیف  دنیا در بنیادی‌ترین سطح خودش به زبان ریاضی اتفاق می افتد و اتفاقا این توصیف فوق العاده کارآمد است. این که حتی کیفیتی مثل رنگ را هم می‌توان ریاضی فهمید واقعا عجیب و غیر بدیهی است. روایت دست اولی ندارم و علاقه‌مندم کتاب اصول ریاضی فلسفه طبیعی نیوتون را که در کتابخانه خاک می‌خورد بخوانم اما این را شنیده‌ام که بخش مهمی از تلاش نیوتون و قبل از او، گالیله، صرف این موضوع شده بود که مردم را قانع کنند تا برای توصیف طبیعت از ریاضی استفاده کنند. آنها با نزدیک شدن به دیدگاه های نو افلاطونی (که نمی دانم چه هستند) و فاصله گرفتن از توصیفات کیفی ارسطویی از طبیعت چنین کاری را انجام دادند. گالیله کاملا فرض می کند که خداوند کتاب طبیعت را به زبان ریاضی نوشته است. تصور می کنم قبل از گالیله، ریاضی (که در واقع فقط هندسه اقلیدسی است) تنها برای توصیف مدار سیارت به کار می‌رفت که به نظر چیزهایی آن جهانی و کاملا مقدس بودند. گالیله و نیوتون در طی تحول نجوم بطلمیوسی به نجوم جدید سعی کردند که ریاضی آن‌جهانی را برای اشیای این‌جهانی هم بنویسند در نتیجه مرز بین زمین و آسمان شکست و تقدس ریاضی وار افلاک به زمین سرازیر شد و ناپاکی غیر روحانی زمین به افلاک سرایت کرد**. شاید حتی می‌توان گفت نوآوری گالیله بیش از این که تجربه‌باوری افراطی باشد (در واقع ارسطو و حتی ابن سینا کاملا به تجربه اهمیت می‌دادند) طرد تجربه به نفع استدلال‌های عقلانی و ریاضی است. چه آنجا که شهود ظاهرا تجربی ما را برای این که اجرام سنیگن‌تر زودتر سقوط می‌کنند را نه با آزمایشی تجربی بلکه با استدلالی عقلانی*** رد می‌کند و چه آنجا که شهود معقول ما برای این که اگر زمین در حال حرکت باشد حتما باید حرکت آن را حس کنیم را نمی‌پذیرد و چه حتی در دفاعش از نظریه کوپرنیک که از داده های تجربی مخالف چشم می‌پوشد ، در هر سه مورد استدلال است که کارساز است نه تجربه. گالیله بیشتر وقتی دست به تلسکوپ می‌شود یا آزمایش های آونگ را انجام می‌دهد پای تجربه را به میان می‌کشد و در باقی موارد (علی الخصوص اصرار بر نوشتن قوانین ریاضی) سر و کار آنچنانی با تجربه ندارد.

القصه این که می شود برای جهان معادلات ریاضی نوشت و از ریاضی استفاده کرد یک فرض به شدت غیر تجربی و نسبتا نامعقول است که ارسطو آن را نپذیرفت و فیزیکدانان امروز بدون تردید قبول کرده‌اند.

*ایده معروفی است که ابن سینا ادامه دهنده راه ارسطو بوده است، البته ظاهرا گرچه ابن سینا تاثیرات عمیق و حیاتی از ارسطو گرفته اما در موارد بسیاری هم پا را از آرای ارسطو فراتر گذاشته و راه را از راه ارسطو کج کرده است. به طور کلی مسلمانان صرفا حافظ فلسفه ارسطو برای رساندن آن به دست اروپاییان دوران رنسانس نبوده اند، در واقع قسمت بزرگی از فلسفه اسلامی اساسا به دست اروپاییان نرسیده است.

** ایده هایی هست که طرد فرشته شناسی سینوی که اساس توضیح ابن سینا از کارکرد جهان و منظومه شمسی بود، در قرون وسطی جهان را به موجودی بی روح تبدیل کرد که زمینه را برای انقلاب کوپرنیکی و فیزیک مکانیکی بعد از آن فراهم کرد. ظاهرا دوهم در جلد چهار تاریخ علم خود (The System of World: A History of Cosmological Doctrines from Plato to Copernicus)  این را می گوید. متاسفانه ظاهرا ترجمه فارسی یا حتی انگلیسی این کتاب وجود ندارد!

*** استدلال گالیله زیبا و سر راست است: فرض کنید چهار آجر داریم، دو آجر را با طناب به هم می‌بندیم و دو آجر دیگر را صرفا بدون طناب کنار هم می گذاریم و هر دو سیستم را (دو آجر متصل با طناب و دو آجر کنار هم بدون اتصال) رها می کنیم. اگر اجرام سنگین‌تر زودتر سقوط کنند آن وقت دو آجر متصل زودتر از دو آجر غیرمتصل به زمین می‌رسند در حالی که این دو سیستم در واقع فقط در یک طناب با هم اختلاف دارند! بنا بر این هر دو باید یکسان به زمین برسند. در واقع اگر گالیله (آن طور که در افسانه های باور شده آمده ) واقعا یک سنگ و یک چوب را به طور تجربی از بالای برج پیزا رها می کرد، ملاحظه میکرد که سنگ زودتر از چوپ می رسد. ما امروز این پدیده را به مقاومت هوا نسبت می دهیم.

۰ نظر موافقین ۳ مخالفین ۰ ۱۷ دی ۹۹ ، ۲۲:۵۱
احسان ابراهیمیان

 

تا به حال برهان خُلف توی ذوق شما زده است؟ شاید زده باشد  شاید هم نه اما برای من بعضی اوقات واقعا برهان روی اعصابی است: از تناقضی برای فرض نقیض حکم، حکم را نتیجه می‌گیرید! همین کافی بود تا با شنیدن این که در ریاضیات شهودگرا برهان خلف مورد پذیرش نیست، در مورد ریاضیات شهودگرا کنج‌کاو بشوم. چیزی که قبلا شنیده بودم این بود که ریاضیات شهودگرا با تاکید بر برهان‌های ساختی (به جای برهان‌های غیر ساختی مثل برهان خلف) یا تاکید بر اصول ساختی (به جای اصول غیر ساختی مثل اصل انتخاب یا اصل کمال اعداد حقیقی) سعی در بنای ریاضیاتی نو دارد. از این گذشته توصیف شهودگرایی از پیوستار تا حد زیادی از توصیف کلاسیک که پیوستار را مجموعه‌ای از نقاط مجزا می‌بیند متفاوت است و تمام این‌ها شاید برای من هیجان انگیز و ترغیب کننده بود که ریاضیات شهودگرایی را ببینم (من قبلا با پیوستار هم مشکل داشتم، هنوز هم دارم، تابع دلتای دیراک این وسط از همه بیشتر روی اعصاب است). همه این‌ها انگیزه شد تا کتاب «فلسفه براوئر» را به عنوان شروعی از شهودگرایی بخوانم (براوئر مبدع و آغازگر شهودگرایی بود).

نتیجه خواندن کتاب اما واقعا زده شدن بود از شهودگرایی!! ظاهرا انگیزه تاکید بر ساختی بودن در ریاضیاتِ شهودگرایی حصول اطمینان از عدم تناقض نیست (چنان که در اوایل قرن بیستم دغدغه ریاضی‌دانان بود) بلکه (دست کم به ادعای براوئر) انگیزه‌های کاملا فلسفی در کار است. تا جایی که من فهمیدم براوئر تکیه فراوانی بر ایده‌آلیسم آلمانی دارد به خصوص نوعی که آن زمان رایج‌تر بود: پدیدارشناسی هورسلی (گرچه شاید خود براوئر به قسمت‌های فراوانی از پدیدارشناسی بدون کمک هورسل رسیده بود). گاهی همین انگیزه‌های فلسفی نوعی تبلیغ برای شهودگرایی محسوب می‌شود، این جمله فراوان تکرار می‌شود که «شهودگرایی فلسفی‌ترین مکتب ریاضی است» اما به نظر من نقطه ضعف شهودگرایی دقیقا همین است! ظاهرا براوئر هیچ تلاشی برای توجیه ریاضیات پیش از خود ندارد بلکه مراد خودش از «ریاضی» آن چیزی است که خودش توصیف می‌کند * و این دقیقا همان جایی است که مشکل من با براوئر آغاز می‌شود.

از نظر منِ فیزیکی، ریاضیات در واقع همان کار فیزیک‌دانان است اما در سطحی انتزاعی‌تر، من نمی‌خواهم ریاضی را به فیزیک و یا فیزیک را به ریاضی فرو بکاهم یا بگوییم یکی مهمتر از دیگری است (این بازی کل کل بماند برای جوان‌تر‌ها)، صرفا می‌خواهم به این نکته اشاره کنم که اگر فیزیک را شناخت جهان بدانیم، ریاضی هم شناخت جهان اما به شکلی انتزاعی‌تر است، اگر ریاضی را بازی زبانی غیر واقعی بدانیم، فیزیک هم یک بازی زبانی غیرواقعی است اما با جنبه کاربردی تر، به نظر من هیچ تفاوت قاطع و خط مشخصی بین ریاضی و فیزیک وجود ندارد و اساسا هر دو دارند یک کار را می‌کنند ( چه این کار شناخت جهان باشد یا بازی زبانی فرقی ندارد!) اما در سطوح متفاوتی از انتزاع (این ایده‌ها را تا حدی مدیون کواین هستم). و کاری که این «فلسفی‌ترین مکتب ریاضیات» می‌کند، کشاندن ریاضی به داخل ذهن و قطع کامل ارتباط بین ریاضی و فیزیک است (مگر این که فیزیک را هم به داخل ذهن بکشیم یا مکتب فیزیک شهودگرایی درست کنیم).

این عدم تمایز قاطع بین ریاضی و فیزیک من را به سمت انتقاد دیگری از شهودگرایی می‌کشاند. من احساس همدلی فراوانی با فایرابند دارم و نهایتا پذیرفته‌ام که فعالیت علمی (به طور خاص فیزیک) نباید محدود به هیچ قیدی باشد، جامعه علمی تعیین می‌کند که کدام روش و کجا مطلوب است و کدام روش مطلوب نیست چه این روش اثبات یک تئوری فیزیکی باشد چه روش مربوط به اندازه گیری مقاومت ماده، هیچ قانون و قید جهانی و همیشگی وجود ندارد  و از همین رو قوانین کلی مثل «فیزیک‌دان باید ابطالگرا باشد» یا «فیزیک باید به روش پوزیتویسم عمل کند»** را نمی‌پذیرم و صرفا نسخه پردازی‌هایی آرمان‌گرایانه می‌دانم که در عمل نه تنها به درد نخور هستند که حتی دست و پا گیراند . نهایتا اگر تمایز قاطعی بین فیزیک و ریاضی قائل نباشم باید بپذیرم که ریاضیات هم باید از چنین قیود محکمی آزاد باشد اما براوئر دقیقا بر سبیل فیلسوفان علم اوایل قرن بیستم برای ریاضی نسخه می‌پیچید: ریاضی باید چنین و چنان باشد! و من از طریق مخالفتم با ابطالگراها یا پوزیتویست‌ها (که به دنبال روشی برای علم بودند) ناچارم با براوئر هم مخالفت کنم و بگویم: «برای ریاضی نسخه نپیچ!» من هیچ قیدی را برای ریاضی قبول ندارم و هیچ قانون کلی را برای آن مجاز نمی‌دانم، هر روشی در هر جایی به دستتان رسید که به نظر مفید بود، مفید است! مگر این که ملت قبول نکنند.

ادعاهایی مثل «ریاضیات بی زبان است» هم مزید بر علت شده تا به کل شهودگرایی بدبین باشدم چون من اساسا ریاضیات را زبانی خاص می‌دانم. به نظرم این ادعا تمام تاریخ ریاضیات را نادیده می‌گیرید. با این همه باید اعتراف کنم این مبادی فلسفی را درست نفهمیدم. نه این کتاب آن قدر واضح توضیح داده بود (کلا با کتاب ارتباط برقرار نکردم) و نه هر بار که تلاش کردم راجع به هورسل و پدیدارشناسی بخوانم، چیز دندانگیری نصیبم شده بود. شاید از همین ندانستن است که با شهودگرایی هم ارتباط برقرار نکردم.

با تمام این انتقادهایم هنوز ایده برهان ساختی برایم جذاب است نه به خاطر این که احساس می‌کنم ریاضی در هر حال باید چنین باشد، بلکه به این خاطر که احساس می‌کنم برخی از مشکلات فیزیک که الان با آن دست به گریبانیم ممکن است از رهگذر چنین روشهایی حل و فصل شود و به همین خاطر هنوز نسبت به روش هاش شهودگرایی دید مثبتی دارم و امیدوارم متن آموزشی درست و حسابی از شهودگرایی به دستم برسد.

 

*همین باعث می‌شود قضایایی از ریاضیات کلاسیک را نپذیرد و در مقابل قضایای دیگری را اثبات کند که در ریاضیات کلاسیک برقرار نیست.

** اتفاقا هر دوی این نسخه‌ها مبادی فلسفی دارند، به این معنی اگر با تکیه بر چنین تزهایی «فیزیکیات ابطالگرا» را همچین چیزی بسازیم و بگوییم «این فلسفی‌ترین مکتب فیزیکی است»، نتایج مزخرفی به دست می‌آید. تمام قدرت فیزیک در این است که خودش را به چنین قیودی محدود نمی‌کند.

پ.ن: با اتمام این کتاب، گشت و گذارم در موضوع فلسفه ریاضی فعلا تقریبا تمام شد. حالا می‌توانم با خیال راحت «فلسفه تحلیلی چیست» را بخونم که چند هفته پیش شروع کرده بودم، امروز چند صفحه اش را ورق زدم و فوق‌العاده جذاب و هیجان‌انگیز بود.

۰ نظر موافقین ۳ مخالفین ۰ ۱۳ آذر ۹۸ ، ۰۰:۵۴
احسان ابراهیمیان

 

این هفته‌های اخیر که بالاخره از شر* موضوع منطق ریاضی خلاص شدم چند کتاب فوق‌العاده خواندم و مغزم رفت به سمت موضوع فلسفه ریاضی. بعد از نا تمامیت، فلسفه ریاضی استیفن بارکر را خواندم، اطلاعات تاریخی بسیار جالبی داشت و تفکیک خوبی بین مکاتب مختلف در فلسفه ریاضی انجام داده بود (خیلی بهتر از گولدستین) گرچه چون چاپ 1349 بود و این اختلاف زمانی 50 ساله خواندن کتاب را به دلیل انتخاب خاص کلمات مشکل می کرد اما در مجموع جذاب بود. ولی نه به جذابی جامعه‌شناسی اثبات ریاضی! در کتاب دوم که غلام‌حسین مقدم حیدری نوشته (تنها کتابی از حیدری که نخوانده بودم ) او با مهارت، ایده فلسفه علم کوهن را به درون ریاضیات می‌برد. محوری‌ترین این ایده‌ها تاثیرات جامعه‌شناسی بر ریاضی است.

این که اقتضائات جامعه‌شناختی بر دانش زمان (حتی ریاضی و منطق) تاثیرگذار باشند برای من عجیب نیست (آنقدر با فلسفه علم کوهن و بازی‌های زبانی ویتگنشتاین خو گرفته‌ام که این ایده را به راحتی بپذیرم) اما چیزی که برایم بسیار جذاب بود تفاوت ریاضیات تحلیلی و ترکیبی بود. همیشه از دبیرستان به بعد برایم سوال بود که چرا هندسه اقلیدسی دبیرستان این قدر با بقیه ریاضیاتی که تا الان خوانده‌ام متفاوت است؟ و چرا اصلا امروز پیگیری نمی‌شود؟ این کتاب شرح همین تفاوت است، که چرا و از کجا شروع شده است. اما هیجان‌انگیزتر از آن فهم این نکته بود که چرا نام کتاب‌های مکانیک ما «مکانیک تحلیلی» است و چرا حساب دیفرانسیل و انتگرال همیشه با «هندسه تحلیلی» مطرح می‌شود. در واقع هر دوی این چراها پاسخی یکسان دارد: استفاده از روش‌های تحلیلی، روش‌های مبتنی بر ارجاع به دستگاه مختصات، نوشتن فرمول، حل معادلات جبری و در یک کلام، تحلیل (یا حل کردن و تجزیه کردن) هندسه و مکانیک به مجموعه  نقاط فضا-زمان. این روش کمتر مبتنی بر شهود و نبوغ و بیشتر مکانیکی است (مکانیکی به معنای الگوریتمی که در چند گام شما را به جواب می‌رساند بدون این که نیاز به استفاده فراوانی از نبوغ داشته باشد) اما روش‌های ترکیبی کاملا برعکس هستند، شما باید نبوغ فراوانی به خرج دهید تا با روش ترکیبی (ترکیب قضایا و تعاریف) نکته‌ای یا قضیه‌ای جدید را اثبات کنید.

روشهای ترکیبی نوعا زیباتر هم هستند برعکس روشهای تحلیلی که مکانیکی‌‌اند آنچنان زیبا نیستند اما در مقابل کاربردشان آسان‌تر است. اما تفاوت این دو در آن زمان صرفا به تفاوت «زیبایی» و «کاربرد» محصور نمی‌شد. تفاوت عمیقی در نگاه متافیزیکی به هردوی این روش‌ها وجود داشت: هندسه ترکیبی یا «هندسه محض» (همان هندسه اقلیدسی با روش اصول موضوعه‌ای) نه فقط روشی برای توصیف جهان بلکه حقیقتی جهانی و مقدس بود و حتی وجه‌های الاهی و مذهبی داشت (کما این که افلاطون استدلال‌های مذهبی بسیاری تنها با اتکا به حقیقت دانش ما از هندسه انجام می‌داد) بنا بر این فیزیک‌دانان و منجمان که راجع به حقیقت جهان بحث می‌کردند باید از روش‌های ترکیبی استفاده کنند نه تحلیلی** در مقابل روش‌های تحلیلی کاملا کاربردی و خاکی جلوه می‌کنند. این تفاوت حتی در اعتقادات طرفداران هر دو روش هم بازتاب دارد: طرفداران روش‌های تحلیلی معمولا انقلابیونی تند و تیز هستند که میانه خوبی با مذهب ندارند (لاپلاس در این مورد یک نمونه اعلی است، ریاضی‌دانی که حتی خدا را باور ندارد چه برسد به مذهب) از سوی دیگر طرفداران روش‌های ترکیبی معمولا محافظه‌کاران سنتی هستند که نوعا معتقد به مذهب‌اند (حتی خود نیوتون آدمی عمیقا مذهبی بود).

نهایتا با توسعه روزافزون روش‌های تحلیلی، کاربرد آسان، تناسب با اعتقادات غیر دینی و ... این ریاضیات تحلیلی بود که پیروز شد. هر چند در این مرحله دلیل پیروزی ریاضیات تحلیلی برای من جالب نیست اما به عنوان کسی که هر روز با این ریاضیات کار می‌کنیم بسیار هیجان‌انگیز و مفید بود که بدانم این ریاضیات تنها نوع قابل فهم ریاضیات نیست و مفهوم ریاضی در طول زمان تغییر فراوانی کرده، این ریاضیات صورتگرای امروز محصولی نسبتا جدید (کمتر از 500 سال) است.

*شر که نبود واقعا دوست داشتم، اما خُب از یک حدی بیشتر فنی باشد واقعا آدم را اذیت می‌کند، خصوصا در طولانی مدت.

**من کتاب «اصول ریاضی فلسفه طبیعی» نیوتون را در قفسه دارم و ورق زده ام، همیشه برایم سوال بود که چرا با وجود این که نیوتون کاملا به روش‌های تحلیلی آشناست و حتی حساب دیفرانسیل و انتگرال که ابداع کرده کاملا درون پارادایم روشهای تحلیلی قرار دارد، خودش در کتاب مکانیک خودش از روش‌های کاملا ترکیبی استفاده می‌کند و هیچ معادله‌ی دیفرانسیلی در دستگاه دکارتی حل نمی کند؟ چرا برای رسم یک مماس بر بیضی از روش قضایای پیچیده هندسه اقلیدسی برای مقاطع مخروطی استفاده می‌کند؟ جواب این چراها همین نکته است: از دید نیوتون طبیعتِ مقدس از واقعیت هندسه محض و ترکیبیِ مقدس پیروی می‌کند نه از روشهای خاکی تحلیلی. جواب به این سوال به این نحوه غیر منتظره برایم کاملا هیجان‌انگیز بود.

پ.ن تحلیلی: روشهای تحلیلی روشهای معمول فیزیک امروز هستند، خوب که فکر می‌کنم یادم می‌آید ما همیشه در حل مسائل فیزیک، دو بخش عمده داریم: 1. تشکیل معادله درست 2. حل آن معادله.  کمابیش همیشه قسمت 1 را فیزیک محسوب می‌کنیم و 2 را ریاضی و در میانه ی حل مسئله همیشه حسی داریم که این قسمت کار فیزیکِ مسئله است و آن قسمت ریاضیات (با لحنی که گویا ریاضی چیزی جدا از فیزیک است) یکی دیگر از چیزهایی که از تمایز میان تحلیلی و ترکیبی یاد گرفتم این بود که این جدایی فیزیک و ریاضی یا 1 و 2 صرفا به خاطر روشهای تحلیلی است و این که  احساس میکنیم مسئله قسمتی دارد مثل قسمت 2 که صرفا باید روشهای کور حل معادلات ریاضی را به کار ببریم، نتیجه مستقیم ظهور روشهای تحلیلی است و جالب این که در کتاب هم به ماهیت مکانیکی روشهای تحلیلی اشاره شده که به شهود فراوانی نیاز ندارند.

پ.ن کتابی: الان دارم کتاب فلسفه براوئر را می‌خوانم، فکر کنم بعد از این حداکثر یک یا دو کتاب دیگر راجع به موضوع فلسفه ریاضی بخوانم. این روزها سرما خورده ام و این کتاب هم آنچنان روان نیست.

پ.ن ریاضی: یادم آمد که علاقه من به بنیادهای ریاضی مربوط به قبل از آشنایی من با فلسفه علم است، من کتاب نظریه مجموعه ها را پنج سال پیش، قبل از خواندن فلسفه علم شروع کرده بودم و هر دو کتاب منطق ریاضی را همان موقع ها خریدم.

پ.ن سیاسی: دل‌مشغولی‌های سیاسی برای من مهم و جدی‌اند، اما چرا این‌جا هیچ بازتابی ندارد؟ دلیل پیچیده‌ای ندارد، نظر من در سیاست احتمالا خیلی عمیق‌تر از نظر رهگذر سر کوچه‌مان نیست که معتقد است «آقا کار، کار خودشونه». ترجیح می‌دهم در این زمینه عمیق مطالعه و فکر کنم، فعلا اوضاع بر مدار هیجان است و هر کسی فُحشی می‌دهد، من ترجیح می‌دهم فکر کنم، تجربه تاریخ نشان داده نتایج فُحش و «هر چی بیاد از اینا بهتره» و هیجاناتی از این دست، هرگز خوشآیند نیست.

پ.ن حاشیه: لعنتی‌های حاشیه دوست، پست قبلی من رکورد بازدید در کوتاه مدت و لایک را شکست! چرا این قدر حاشیه دوست دارید؟

۱ نظر موافقین ۳ مخالفین ۰ ۰۹ آذر ۹۸ ، ۱۵:۲۴
احسان ابراهیمیان

دیشب تمامش کردم، بی‌نهایت زیبا، بی‌نهایت هیجان‌انگیز و بی‌نهایت بصیرت‌بخش بود. کتاب راجع به قضیه گودل، پیش‌زمینه‌ها و واکنش‌های آدمها به این قضیه بود. طرح کلی اثبات قضیه گودل را هم نوشته بود و تا جایی که با اصل اثبات آن در کتاب منطق ریاضی اندرتون مقایسه می‌کنم، به محتوای اصلی قضیه وفادار بود. برای منی که همین چند هفته پیش اثبات قضیه گودل را به صورتی کاملا فنی خوانده بودم، خواندن حواشی این اثبات، انگیزه‌های خود گودل و فضای فکری آن زمان بی‌اندازه جذاب بودند. این هیجان آنقدری بود که بعد از جز و کل هایزنبرگ یکی از معدود کتابهایی بود که از تمام شدنش دلگیر شدم. گرچه گاهی اوقات ترجمه‌اش نامفهوم می‌شد اما روی هم رفته بسیار جذاب بود.

البته نمی‌توانم انکار کنم بخش قابل توجهی از جذابیت این کتاب بابت شرح تقابل دیدگاه ریاضی ویتگنشتاین با گودل بود، این دو غول اندیشه، این دو نابغه و این هر دو ارجمند برای من، اما یکی متعهد به صورت گرایی و بازی‌بودگی ریاضی و دیگری افلاطون‌گرایی تمام عیار معتقد به عینیت ریاضی! در واقع این درگیری تا حدودی برای من موضوعی شخصی محسوب می‌شود، موضوع صدق ریاضی همیشه برای من (و ملت) عجیب  و جذاب است و مناقشات بین این دو غول به نظر می‌رسد که راهی برای من باز می‌کند برای معنای عقلانیت که نهایتا دنبال آن هستم.

صدق ریاضی یعنی چه؟ از گذشته‌های دور صدق قضایای ریاضی عجیب بود، آنها همیشگی و ازلی به نظر می‌رسیدند و به نظر ربطی به مکان و زمان و تجربه نداشتند، اما چطور با استنتاج، به چیزی که همیشه و همه جا درست است می‌رسیم؟ می‌توان صدق قضایای ریاضی را به صدق اصل‌های ریاضی تحویل کرد که خود آن اصل‌ها هم بدیهی هستند، به همین خاطر استنتاج از اصولِ «شهوداً» بدیهی قضایایی به دست می‌دهد که باید برقرار باشند. اما صدق این قضایا واقعا یعنی چه؟ صدق «اکنون اینترنت قطع است» را به راحتی می‌فهمیم، «اینترنت» و «قطعی» و «اکنون» در دنیای بیرون مابه ازا دارند و صادق و کاذب بودن آن معلوم است (که متاسفانه الان صادق است :)) ) اما آیا مثلا 1+2=3 واقعا در جهان برقرار است؟ برای برقراری واقعی 1+2=3 باید 1 و 2 و 3 و + (و =) در دنیای بیرون ما به ازا داشته باشند، افلاطون پیشنهادی می‌دهد: بله واقعا دارند! قضایا و اصل‌های ریاضی در جهانی شبیه مُثُل افلاطونی واقعا به طور لامکان و لازمان و جاودان وجود دارند و ما با عقل محدود و این جهانی خودمان به این قضایای همیشه درست (لااقل بخشی از آن) دسترسی داریم (مطمئن نیستم ولی ظاهرا بخشی از استدلال افلاطون برای اثبات این که ما پس از مرگ هم زنده هستیم همین است که ما با این موضوعات جاودان ارتباط داریم بنابر این وجود ما یک قسمت جاودانی هم دارد) اغلب حتی صدق این قضایا مستقل از هر تجربه‌ای فرض می‌شود. این صدق مستقل از تجربه* بسیار وسوسه انگیز است و بر اساس ادعای کتاب، همین باعث شده ریاضی راهنمای خردگرایان تاریخ همچون دکارت و اسپینوزا و لایبنیتز باشد: با عقل و شروع از قضایای بدیهی و استنتاج، همیشه می‌توان به قضایایی کاملا درست رسید بدون این که وارد دنیای شلوغ و گول زننده و کثیف تجربه شد (مضاف بر این، برتری استنتاج، ضرورت قطعی آن است در حالی که تجربه از استقرا کمک می‌گیرد که نتیجه آن هرگز اطمینان بخش نیست)، پس ما باید این الگوی ریاضی را در مورد فلسفه و فیزیک هم به کار بگیریم تا جهان را بفهمیم، بدون ارجاع زیادی به تجربه. مجموع این دیدگاه ها با افلاطون گرایی در ریاضی همپوشانی دارد: ریاضیات واقعیتی مستقل از ماست که ما آنها را شهود می‌کنیم و همیشه صادق است. (گودل و پنروز صریحا از چشم سوم ریاضی دانان صحبت می‌کنند، بسیاری را دیده‌ام که در پاسخ این پرسش که:« چطور چنین اثبات شبیه جادوگری برای قضیه فلان پیدا شده؟» پاسخ می‌دهند که آن ریاضی دان قضیه را شهود کرده و در نهایت شهود خودش را صوری کرده و اثبات را نوشته، حتی خود گودل هم قضیه ناتمامیت خود را در دفاع از دیدگاه افلاطونی‌اش منتشر کرده: ریاضیات را نمی‌توان به رشته نماد تقلیل داد، شهود تا ابد نقش مهمی در ریاضی دارد و این شهود است که تعیین کننده است، اما شهود باید معطوف به چیزی باشد، آن چیز اشیای جهان افلاطونی است)!

از دیگر سو تجربه‌گراها که روی هم رفته تمام معرفت بشر را حاصل از تجربه می‌دانستند، با صدق جاودانی و «پیشینی» قضایای ریاضی در تکاپو بودند، راه حل نهایی نه ارجاع قضایای ریاضی به جهان افلاطونی (که راز آمیز جلوه می‌کرد) بلکه تقلیل ریاضی به صورت‌هایی بی‌معنی و بدون ما به ازای خارجی بود: صرفا قواعد بازی با نمادهای صوری؛ ریاضیات صادق است چون بر طبق قواعد ریاضی است، صدق و کذب را قواعد ریاضی مشخص می‌کند و این صدق و کذب ربطی به دنیای بیرون ندارد. ویتنگشنتاین (هم متقدم و هم متاخر، شاید جزو معدود جاهایی که ویتگنشتاین متقدم و متاخر با هم موافق‌اند) نهایتا یکی از پخته‌ترین دیدگاه‌ها را به نفع صورتگرایی انجام می‌دهد، ویتگنشتاین تا حد زیادی با ایده بازی‌های زبانی، مشکل صدق ریاضی را حل (که چه عرض کنم نابود) می‌کند، به نظر ویتگنشتاین (تا جایی که من می‌فهمم) صدق ریاضی صرفا به خاطر تعهد به قواعد است و آن بیرون هیچ ریاضیاتی در کار نیست و هیچ صدقی هم در کار نیست، شاید بتوان با در نظر گرفتن وجود مدل‌های ناسازگاری مثل هندسه اقلیدسی و نااقلیدسی این ایده ویتگنشتاین را جدی‌تر گرفت (در نگاه افلاطونی، بالاخره هندسه اقلیدسی صادق است یا نا اقلیدسی؟) ریاضیات همانقدر صادق است که بازی شطرنج، بازی شطرنج شاید مدل خوبی از سیاست باشد اما اساسا سوال از صدق آن مسخره است، ریاضیات شاید دنیای ما را به خوبی مدل کند (البته ظاهرا خود ویتگنشتاین هیچ نیازی به این نمی‌بیند که بگوید ریاضی جهان ما را واقعا خوب مدل می‌کند) اما پرسش از صدق آن بی‌معنی است، صدق جاودان آن فقط به خاطر قواعد است، وگرنه جهان افلاطونی واقعا باید چطور باشد که 1+2=3 نباشد؟

تمام این مناقشات و مباحثات برای من حیاتی است، چون در نظر من ریاضیات همان کاری را می‌کند که فیزیک انجام می‌دهد، اما در سطحی نسبتا انتزاعی‌تر، از نظر من مرز قابل تشخیص و تیزی بین ریاضی و فیزیک وجود ندارد، برای همین از نظر من «شهود ریاضی» هم تفاوت آنچنانی با «شهود فیزیکی» که کاملا حاصل از عادت به تجربه است، ندارد. بنا بر این اگر ریاضی را به مثابه بازی زبانی یا قواعد بی‌معنی بفهمیم، باید فیزیک را هم این‌گونه بفهمیم، اگر به فیزیک ارزش معرفت‌شناسانه «عینی» بدهیم، به ریاضی هم باید بدهیم، این دو اساسا یک چیز هستند بنابر این فلسفه ریاضی از اساس برای من برادر فلسفه علم محسوب می‌شود و مهم است. به نظرم همین ایده راه را برای آشتی دادن ایده بازی‌های زبانی و جهان عینی باز می‌کند و شاید بتواند من را از این گرداب «قواعد انتخاب پارادایم» بیرون ببرد: بالاخره چه دیدگاهی عقلانی است؟

*صدق مستقل از تجربه و پیشینی ریاضی به نظر من حرف دقیقی نیست، چه راسل تجربه‌گرا سعی کند با نشان‌ دادن این که «ریاضی همان منطق است» آن را نشان بدهد و چه گودل سعی کند با نشان دادن قضیه‌اش به ما بقبولاند که ریاضی امری است آن‌جهانی که ما با چشم سوم شهود می‌کنیم، به نظر من ریاضی از ابتدا در برخورد با طبیعت شکل گرفته و ابدا ماهیت پیشینی ندارد، ریاضی قواعدی است که ما عادت داریم با آن دنیا را ببینیم و این قواعد چنان در زبان و توری معرفت ما تنیده شده‌اند که به سختی می‌توان غیر از آن را تصور کرد. این ادامه همان ایده من است که شهود ریاضی در اصل همان شهود فیزیکی است، برای داشتن شهود لازم نیست حتما تمام حقیقت را بدانیم، فیزیک ارسطویی هم پر از شهود بود و فیزیک‌دانان ارسطویی واقعا راجع به طبیعت شهود داشتند، گرچه امروز آن شهود پذیرفته نیست اما به هر حال شهود بود. به همین معنی ما ریاضی را هم شهود می‌کنیم و من نیازی نمی‌بینم برای وجود این شهود به جهان افلاطونی متوسل بشوم. این شهود ریاضی اساسا سطحی بالاتر و انتزاعی‌تر از همان شهود روزمره فیزیکی است و معطوف به همین جهان است.

پ.ن، عقل‌گرایی و افلاطون‌گرایی: به نظرم تناقضی در ارتباط دادن عقل‌گرایی با افلاطون‌گرایی هست، افلاطون‌گرایی اتفاقا سعی می‌کند صدق ریاضی را به تجربه ربط دهد: تجربه کردن جهان مُثُل افلاطونی، اما عقل گرایی سعی می‌کند از توسل به هر گونه شهود ضعیفی بپرهیزد و از مسائل «برای همه بدیهی» شروع کند و استنتاج کند تا هرگز مشکلی پیش نیاید، عقل‌گرایی از این جهت کاملا روح مشابهی با صورت‌گرایی هیلبرت یا اثبات‌گرایی منطقی حلقه وین دارد، گرچه همیشه عقل‌گرایی دیدگاهی در مقابل تجربه‌گرایی تصویر می‌شود اما تجربه‌گرایی منطقی اروپای قرن بیستم به نظرم ترکیب عقل‌گرایی دکارتی و اسپینوزایی با تجربه‌گرایی هیوم و لاک است، روش‌ها همچنان روش‌های استنتاج عقل‌گرایان است و فقط صدق پیشینی و عینی برخی قوانین به نفع تجربه گرایی کنار گذاشته می‌شود، شاید این همان ترکیبی است که کانت ایجاد می‌کند و نکته طنزی است که ادامه کانت از یک سو به ایده‌آلیست‌های مغلقی چون هگل می‌رسد و از سوی دیگر به سنت اثبات‌گرایی صریحی چون راسل که دشمن خونی هگل است! نمی‌دانم ولی راجع به ارتباطشان مطمئن نیستم.

پ.ن کتاب: اول می‌خواستم کتاب «فلسفه تحلیلی چیست» را شروع کنم که به نظر انتخابی منطقی بعد از «کواین» بود اما ارائه قضیه گودل به بچه‌های اتاق از یک طرف و موضوعات فوق‌العاده هیجان‌انگیز کتاب ناتمامیت از سوی دیگر باعث شد که فعلا مغزم به وادی فلسفه ریاضی قفلی بزند، کتاب‌هایی که الان در دستور کارم هستند «فلسفه  ریاضی» استیفن بارکر به علاوه «جامعه شناسی اثبات ریاضی» «فلسفه براوئر» و شاید «از ارسطو تا گودل» است. فلسفه تحلیلی چیست بماند برای بعد از این‌ها.

پ.ن1: کتاب چنان جذبم کرد که لحظه‌ای دلم نمی‌خواست آن را زمین بگذارم و این تا حد زیادی این روزهای بی‌اینترنت را برایم دلپذیر کرد، چه چیزی بهتر از این که مزاحمی نباشد تا این موضوع جذاب را بخوانم.

پ.ن2: واقعا خدا را شکر که حداقل این وبلاگ لود می‌شود (البته فقط با اینترنت دیتا!!! :|||| )

پ.ن3: چه آبان پر پُستی داشتم :))  هر چند ظاهرا فقط دارم برای خودم می‌نویسم.

پ.ن4: معنای عقلانیت هر چه باشد مطمئنم گفت و گو بخش مهمی از آن است نه قطع راه گفت و گو!

۰ نظر موافقین ۱ مخالفین ۰ ۲۸ آبان ۹۸ ، ۲۱:۴۶
احسان ابراهیمیان